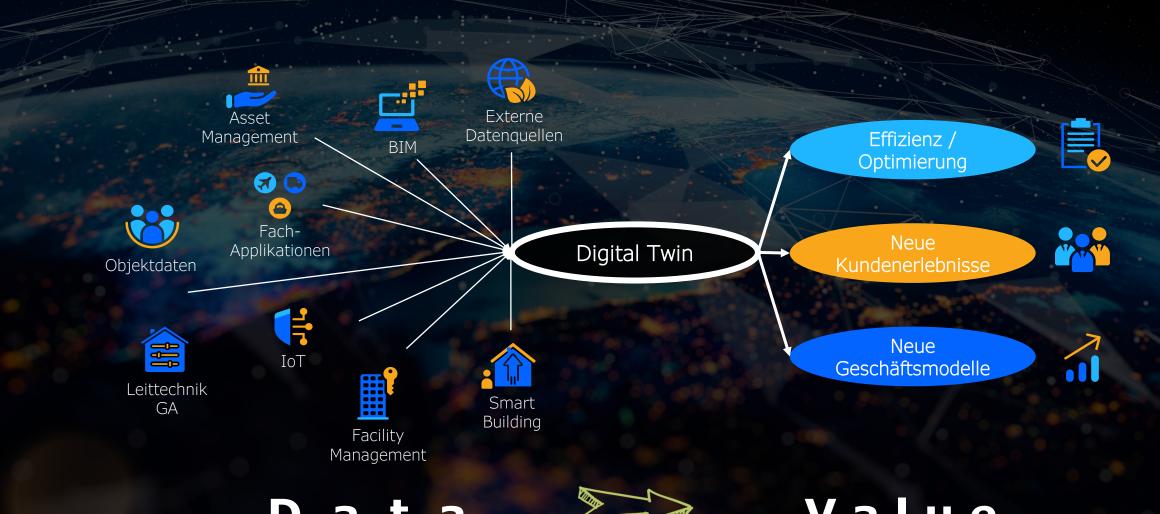
Twin Transformation – Digitalisierung als Gamechanger der Nachhaltigkeit!

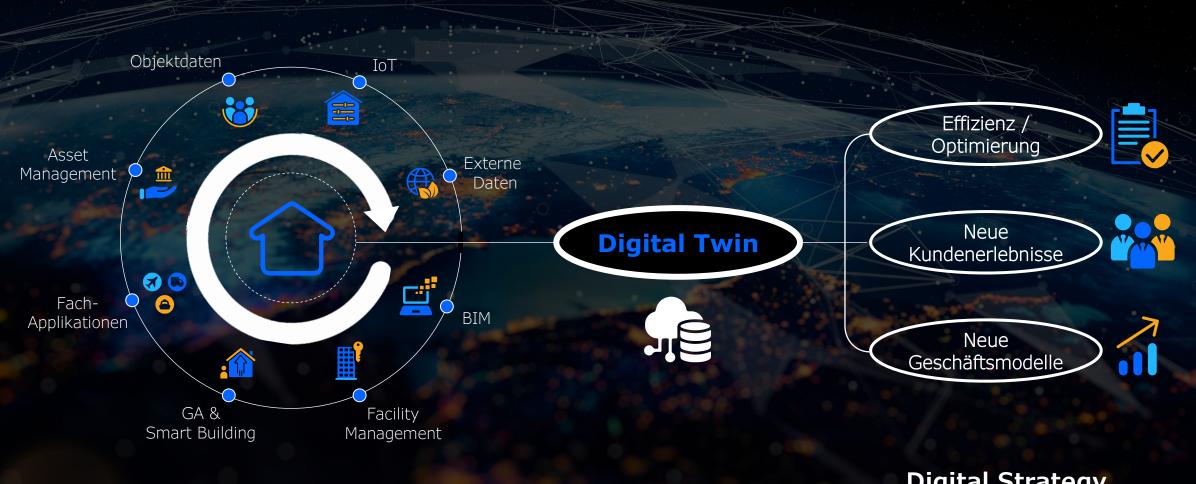
Philipp Büchi

Ineltec, 11. September 2024

Inhalt



Digitalstrategie



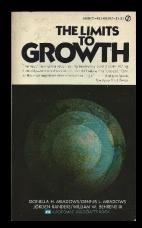
Digital Twin

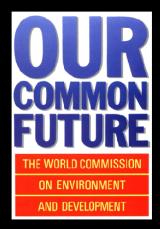
Value

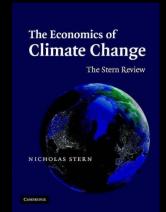
Digitale Potentiale in Real Estate

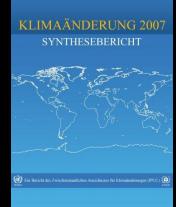
Business Tools & Data

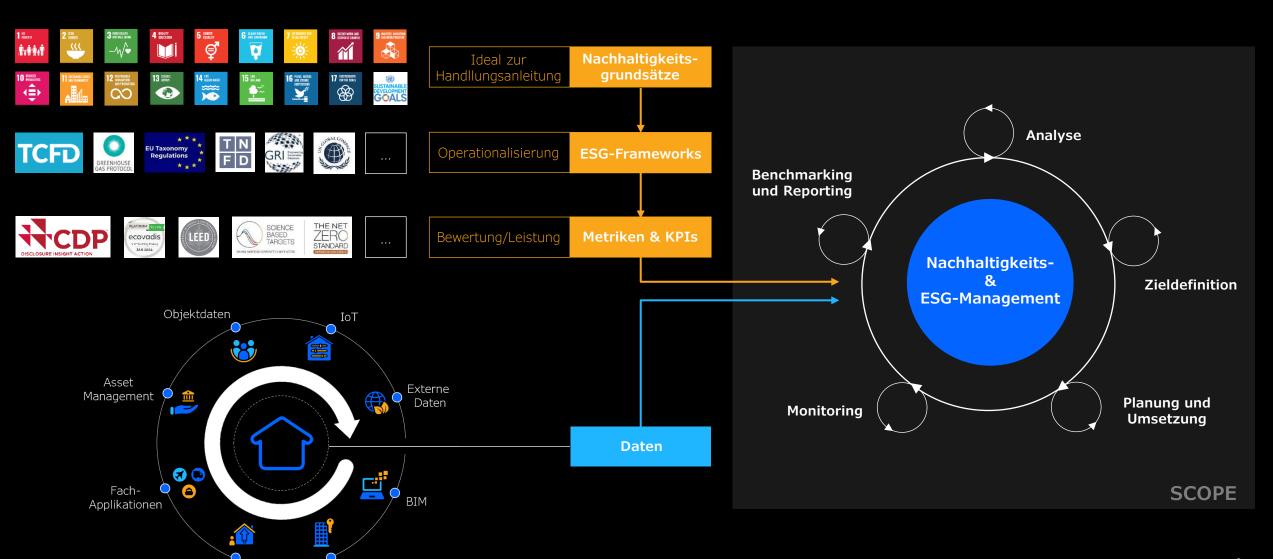
AI & Cloud


Digital Strategy
Sustainability


Nachhaltigkeit




Werte, Regeln, Normen, Standards werden zu verbindlichen Nachhaltigkeitsgrundsätzen


Standards & Daten bilden die Grundlagen

Facility

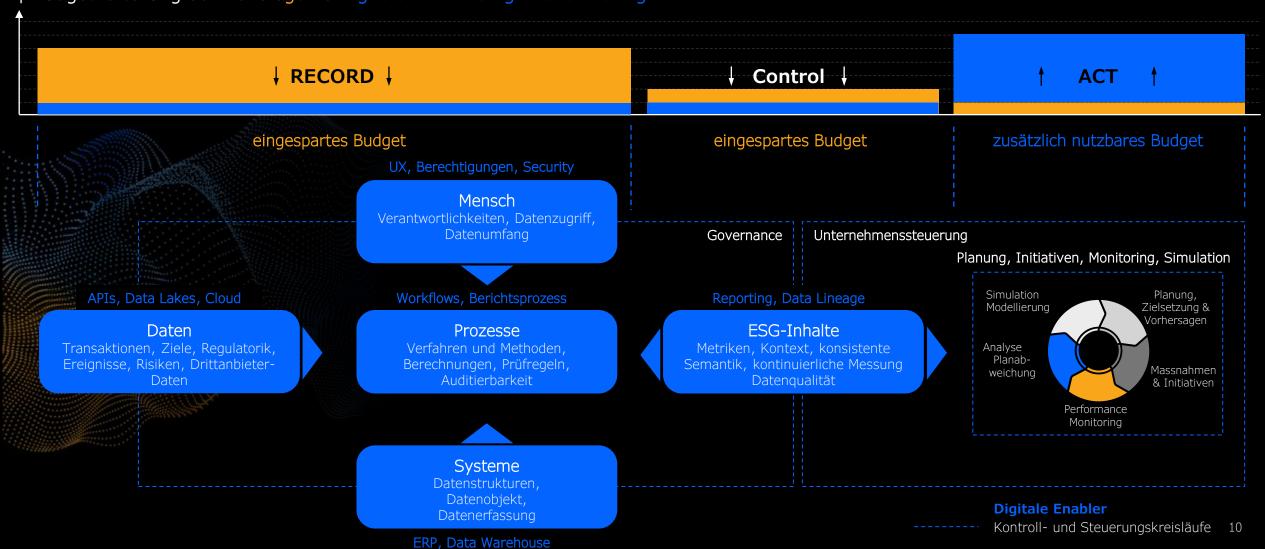
Management

für nachhaltige Entwicklungsprozesse

GA & Smart Building

Twin Transformation

Nachhaltigkeitsgrundsätze



Einfluss von Digitalisierung

auf die nachhaltige Unternehmenssteuerung und -entwicklung

\$ Budgetverteilung beim analogen & digitalen Nachhaltigkeitscontrolling

Twin Transformation

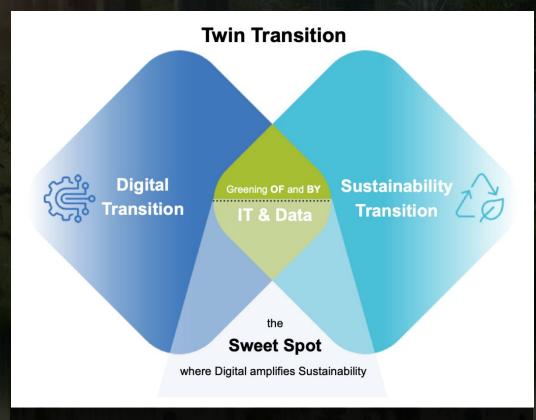
Digitale Transformation meets Sustainability Transformation

Digitale ransformation

umfasst Prozesse auf allen Ebenen der Gesellschaft die

- Infrastrukturen
- Dienste
- Anwendungen
- menschliches Verhalten betreffen

und von der digitalen Darstellung von Wissen und Computerleistung abhängen


GREENING

of IT & Data by IT & Data

achhaltigkeitsransformation umfasst Prozesse auf allen Ebenen der Gesellschaft auf dem Weg zu einer nachhaltigen Entwicklung.

Hierzu gehören u.a.

- Reduktion der Treibhausgasemissionen
- Erhalt und Wiederherstellung der Natur
- · Umkehrung der Umweltzerstörung
- Sicherstellung der vornehmlichen Nutzung erneuerbarer Energien

Twin Transformation beschäftigt sich mit

- Auswirkungen der Dynamik und Stärke der digitalen Transformation auf die Nachhaltigkeitstransformation der Gesellschaft
- gegenseitiger Beeinflussung dieser beiden Transformationen
- optimaler Kombinatorik in den kommenden Jahren

Mögliche Umwelteffekte durch Digitalisierung?

Direkte Effekte

ndirekte Effekte

Optimierungs-Effekt

Substitutions-Effekt

Obsoleszenz-Effekt

Negativ

Lebenszyklus digitaler Infrastrukturen

> Verlagerungs-Effekt

Systemische Effekte

Positiv

Produktions- & Konsummuster

Rebound-Effekt

Entstehende Risiken

Green by IT

Technologie	IKT gesamt	IOT 🔐	IOT & KI	KI & Big Data	Blockchain 🗗 🗗	Digitale Zwillinge	Video Kommunikation digit. Plattformen
Funktions- weise	IKT umfasst alle relevanten Soft- und Hardware-Infrastrukturen der Telekommunikation und ist Basis für digitale Anwendungen (Server, Rechenzentren, digitale Endgeräte wie Handys und Laptops, etc). Effektive Bereitstellung von Vernetzungs-, Kommunikations- und Transaktionsmöglichkeiten, z.B. durch digitale Infrastruktur	Vernetzung physischer und virtueller Objekte unter Verwendung von digitaler Sensorik und Aktorik. Durch automatische Identifikation, Fernüberwachung und Fernsteuerung können relevante Daten bereitgestellt und integriert werden sowie Prozesse optimiert werden. Dadurch können der Einsatz von Ressourcen und der Energieverbrauch reduziert werden.	Effiziente Überwachung und Steuerung im städtischen Raum durch digital vernetzte Ökosysteme, Prozesse und technische Artefakte (Geräte, Fahrzeuge, Gebäude, etc.) Planungs- und Entscheidungshilfen durch umfangreiche Datenerfassung und -Auswertung Effizienzsteigerungen durch Vernetzung und Automatisierung sowie optimierte Überwachung und Steuerung von Produktionsprozessen	Algorithmische Verarbeitung großer Mengen an Daten z. B. für präzisere Prognosen in der Klimaforschung und zur effizienteren Vorhersage von Umweltereignissen im Bereich der Klimaanpassung. Effizienterer Einsatz von Ressourcen durch intelligente Systemsteuerung	Digitale und dezentrale Durchführung von (Kleinst-) Transaktionen Erleichterte Regulierung und Monitoring (z. B. Emissionshandel) durch Manipulationssicherheit, Irreversibilität, Dezentralität & Transparenz	Virtuelie Modellierung, Simulation, Gestaltung, Optimierung und Evaluierung anhand digitaler Kopien Auswertung von Produkt- und Produktionsdaten sowie Simulation von alternativen Szenarien	Effektive Vernetzung und Kommunikation Integration und Vernetzung von Bürger*innen in Klimaforschung
Anwendungs- fälle	Vielfältige Anwendungsmöglichkeiten, z.B.: • Vernetzung digitaler Geräte • Kommunikation und Informationsvermittlung • Ermöglichung von Homeoffice sowie digitalen Besprechungen und Konferenzen mithilfe digitaler (Video-)Kommunikation	Smart Home & Smart Bulldings Smart Metering & preisdynamische Tarife Smart Charging & virtuelle Kraftwerke Sensorik und Drohnen für automatisierte Landmaschinensysteme und Daten für Präzisionslandwirtschaft Smart Factory & Industrial Internet of Things	Algorithmisch optimiertes Lademanagement für E-Autos It - basierte Verkehrssteuerung über Routen, Ampeln und Fahrzeuge Digital gestütztes Parkplatzmanagement Integrierte Entwicklung von städtischer Mobilität und Energiewende Vielfältig einsetzbar in Rohstoffgewinnung, Produktentwicklung und design sowie Herstellung, Handel und Konsum Breite und detaillierte Informationserfassung für effiziente Prozessgestaltung Erkundung leicht recyclebarer Werkstoffkombinationen Bilderkennung für Sortier-, Demontage- und Recyclingprozesse Einsatz und Optimierung von Robotik in der Produktion Smart Monitoring & Predictive Maintenance	Verschiedenste Arten von Prognosen (B. Wetter, Stromerzeugung, Anlagenzustand/ Wartungsbedarfe oder Energieflüsse) KI -Nutzung zur Modellierung und Simulation in der Klimaforschung KI -gestützte Datenanalysen & Management-Informations-Systeme und bessere Handlungsempfehlungen	Herkunftsnachweise von Erneuerbaren Energien (Labeling) Stammdatenregister von Erneuerbaren-Energien- Anlagen Peer-to-Peer- Stromhandel & Smart Contracts für Abwicklung von Transaktionen	Nachhaltigkeitsbewertung und - optimierung in Designphase Smart Monitoring & Predictive Maintenance Effiziente Design-, Simulations- und Planungsprozesse Produktentwicklung und -analyse mit geringem Ressourcenaufwand Vorausschauende Wartung dank Simulationsmodellen (Predictive Maintenance)	Kommunikation: Digitale Durchführung von Besprechungen und Konferenzen Bürger*innenforschung durch Verwendung digitaler Plattformen und Apps
Umwelt- chancen	Effizienzsteigerung, Substitutionseffekte & Ressourceneinsparungen durch digitale IKT-Dienstleistungen Verringerung von Emissionen durch Vermeidung von Flugreisen, Pendelverkehr und anderer Formen der Mobilität	Geringerer Energieverbrauch durch Monitoring und Automatisierung, z. B. von Energiesystemen Optimierter Einsatz von Speichern, Verbrauchern und Erzeugern sowie Ressourcen wie etwa Boden, Energie und Wasser Geringerer Netzausbau und Wartungsbedarf Geringerer Einsatz von Düngemitteln & Optimierung von Erntevorgängen Ressourcenschonung durch Optimierung von Produktionsprozessen	Erfassung, Monitoring und Planung klimafreundlicher und resilienter urbaner Ökosysteme Geringere Ressourcen-, Schadstoff- und Emissionsbelastung, B. durch effiziente Verkehrssteuerung Senkung des Energieverbrauchs von E-Autos sowie höherer Anteil an erneuerbarer Energie Energetische Optimierung durch Vernetzung und Steuerung im Gebäudemanagement Geringerer Ressourceneinsatz in der Produktion durch Vermeidung von Ausschuss Verringerte Stoffströme durch Monitoring und Tracking Optimierte Nutzung von Konsumgütern durch digital unterstütztes Teilen Geringerer Material- und Energieverbrauch durch intelligente Überwachung, Steuerung und Wartung Effizienzgewinne durch Automation	Geringerer Material- und Energieverbrauch durch intelligente Steuerung, Nutzung und Wartung von Energiesystemen Verbesserung der Klimaforschung z.B. validere Prognosen von Klimaereignissen Optimlerter Einsatz von Ressourcen wie etwa Boden, Energie und Wasser Großes Potenzial im Bereich der Klimaanpassung durch verbesserte (Wetter Wetter-) Prognosen Präzise Prognosen und Validierung von Modellen Steuerung und Automatisierung komplexer Prozesse Umgang mit Komplexität	Effizientere Informationsbereitstellun g durch Wegfall von Intermediären bei Geschäftsprozessen Unterstützung bei Regulierung und Monitoring (z. B B. Verwaltung des Emissionshandels)	Reduktion des Energie - und Ressourcenverbrauchs von Produkten oder Produktionsanlagen im Betrieb sowie Feedback für ressourcenressourcen- und energieeffizientes Produktdesign Schlanke und kreislauffählge Produktdesigns durch Abbildung und Optimierung von Lebenszyklen (B. PV -Module) Geringerer Ressourceneinsatz in der Produktion durch Vermeidung von Ausschuss Umweltfreundlichere Produkte durch transparente Wertschöpfungsketten (digitaler Produktpass)	Verringerung von Emissionen durch das Vermeiden von Flugreisen Vermeiden von Flugreisen und anderer Formen von Mobilität Größere und tiefergehende Datenakquise durch Büger*innenforschung
Umwelt- risiken	Zunahme des Energieverbrauchs durch erhöhte IKT-Nachfrage und Datenströme Risiko für Rebound- und Obsoleszenz-Effekte durch komplexe Wechselwirkungen und Verhaltensänderungen	Großflächiger Rollout digitaler Infrastrukturen / Energie – und Ressourcenverbrauch Erhöhte Netzbelastung durch gleichzeitige Ansteuerung vieler technischer Einheiten Rebound-Effekte können Ressourceneinsparungen entgegenwirken	Rebound-Effekte durch bloße Optimierung bestehender (nicht nachhaltiger) Verkehrssysteme mittels Digitalisierung Verstetigung von Mobilitätskonzepten durch Förderung technischer Einzellösungen anstatt tief greifender Umgestaltung Steigender direkter Ressourcenverbrauch durch unverhältnismäßige Anwendung (B. Edge AI) und etwaige Lock-in -Effekte Energie- und Ressourcenaufwand für KI - und IoT IoT-Infrastrukturen	Hoher Energie – und Ressourcenbedarf für Datenspeicherung und -verarbeitung, insbes. KI KI-Training und -Anwendung sowie in der Forschung Rebound Effekt	Potenziell hoher Energie – und Ressourcenbedarf der Blockchain könnte mögliche Einsparungen (Umweltchancen) überwiegen	Energieaufwand für Datenverarbeitung und Simulationen Nur geringe Verbesserung der Kreislaufführung bei gleichzeitig hohem Energieaufwand für Datenverarbeitung und Simulationen oder gesteigerter Produktion (Rebound-Effekte)	Mögliches Risiko von Rebound-Effekten durch einen starken Anstieg in der Nutzung dieser Technologien
THG-Effekte	Produktion und Nutzung digitaler Geräte sind für bis zu 4% der globalen THG-Emissionen verantwortlich. TGH-Einsparungen z. B. durch Effizienzsteigerungen werden global betrachtet verringert durch Auslagerung der energieintensiven Produktion digitaler Geräte	Positiver Effekt durch reduzierten Energieverbrauch und vermiedene Abregelung von erneuerbaren Energien	Unklarer Effekt, einerseits Reduktion durch optimierte Verkehrsführung oder Lademanagement, andererseits sind durch Effizienzgewinne im Individualverkehr Rebound-Effekte wahrscheinlich Unklarer Effekt, einerseits Reduktion durch Material- und Abfallmanagement, gleichzeitig werden Rebound- und Lock-in- Effekte begünstigt, wenn Effizienzsteigerungen nicht mit systemischtransformativen Maßnahmen flankiert werden Positiver Effekt durch Reduktion von Energieintensität und Ausschuss in der Produktion	Positiver Effekt durch erhöhte Lebensdauer oder optimierten Ertrag von Energietechnologien Grosses Potential durch verbesserte Prognosen (Wetter, etc.)	Gesamteffekt unklar, da indirektem Potenzial durch Ermöglichung und effizientere Abwicklung von Geschäftsprozessen, ein potenziell hoher Energiebedarf der Blockchain gegenübersteht	Positiver Effekt durch simulationsbasierte Effizienzverbesserungen von Produktionsmaschinen und Werkzeugen Positiver Effekt durch gesteigerte Lebensdauer, verringerten Ressourceneinsatz oder bessere Recyclingfähigkeit von Produkten	Positiver Effekt durch das Vermeiden von Flugreisen, Nutzung weiterer Infrastruktur (Autofahrten, Hotel- und Veranstaltungsräume)

Green by IT

IoT & KI **Bsp.: IoT & KI** Funktion: • Effiziente Überwachung, Steuerung und Optimierung Anwendungsfall: • Smart Monitoring Kombination und Auswerten verschiedener Datenquellen Energetische Optimierung durch Vernetzung und Steuerung im Gebäudemanagement Umweltchance Effizienzgewinne durch Automation Energetische Optimierung durch Vernetzung und Steuerung im Gebäude- und Energiemanagement

Digitale Zwillinge

Bsp.: Digital Twin

Funktion:

• Virtuelle Planung, Simulation & Optimierung

Anwendungsfall:

- Nachhaltigkeitsbewertung und -optimierung
- Smart Monitoring & Predictive Maintenance
- · Effiziente Design-, Simulations- und Planungsprozesse

Umweltchance

- Reduktion von Energie & Ressourcen
- Schlanke und kreislauffähige Produktdesigns durch Abbildung
 - und Optimierung von Lebenszyklen
- Umweltfreundliche Produkte durch transparente Wertschöpfungsketten

Green IT

10% des Energieverbrauches durch Digitale Infrastrukturen (30% Computer & Handys, 30% Datacenter und 40% Netze)

Mögliche Massnahmen für Green IT:

Umweltfreundliche Rechenanlagen

Data-Sharing

Edge Computing

Effiziente Algorithmen & Software

Energieeffiziente Computerchips

Recycling Digitaler Komponente

Take Away

Be/Get **Digital**

Use **Data**

Generate Value

Be **Sustainable**

generate added value

Philipp Büchi
Senior Manager
Head of Real Estate
philipp.buechi@eraneos.com
+41 58 411 96 42